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Oscillations 
Torsion pendulum 

Forced rotational oscillations  
 
Measuring with a hand-held stop-clock 

Objects of the experiment 
g Measuring the amplitude of forced rotational oscillations as function of exciter frequency for various damping constants 

g Determining the natural frequency of the oscillator 

g Investigating the phase shift between the exciter and the oscillator 
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Principles 
Oscillations (and wave) phenomena are well known due to 
their presence everywhere in nature and technique. 

The rotary oscillations are a special case among various 
mechanical oscillator models which allow to investigate the 
most important phenomena occurring in all types of oscilla-
tions. In experiment P1.5.3.1 the free damped rotary oscilla-
tions have been investigated. In this experiment it will be 
investigated how the oscillator reacts to an external periodic 
force. 

When applying the periodic torque  

)tsin(MM ex0ex ⋅ω⋅=              (I) 

we obtain the following equation of motion for the damped 
rotary oscillating system (compare equation (I) in leaflet 
P1.5.3.1):  

)tsin(MD
dt
d

k
dt
d

J ex02

2

⋅ω⋅=ϕ⋅+ϕ+ϕ         (II) 

J: moment of inertia 

D: directional quantity (restoring torque) 

k: damping coefficient (coefficient of friction) 

ϕ: angle of rotation 

M0: maximum of external torque 

ωex =  2π⋅ν: frequency of the external torque 

 

The solution of this inhomogeneous differential equation is 
the sum of a specific (particular) solution and the general 
solution of the corresponding homogeneous differential equa-
tion (M0 = 0). The latter, however, decreases exponentially 
(compare equation (V) in leaflet P1.5.3.1) and is no longer 
significant after a sufficiently long period of time. 
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Fig. 1: Resonance curves (top) and phase shift between exciter and 
oscillator (bottom) for various damping constants δ.  
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For the specific solution the following relationship can be 
used: 

)tsin()()t( exex0 φ−⋅ω⋅ωϕ=ϕ            (III) 

Substituting equation (III) in equation (II) gives after several 
trigonometric transformations the amplitude of the forced 
oscillation: 
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The frequency at which the amplitude of the oscillation is 
maximal is called the resonance frequency ωR (amplitude 
resonance). This is the case when the radicand in the de-
nominator is minimal. By equating the derivative of the radi-
cand with respect to ω to zero the following relationship for 
the resonance frequency is found: 

22
02

2
2
0R 2

J2
k δ−ω=−ω=ω           (VI) 

with 

J
D

0 =ω
 (natural frequency)         (VII) 

J2
k
⋅

=δ
  (damping constant)         (VIII) 

 

The lower the damping the less the resonance frequency 
differs from the natural frequency ω0 and the larger is the 
amplitude. In the limit of disappearing damping (k → 0) the 
amplitude at the resonance frequency (ωex = ω0) would tend 
towards infinity (so called resonance catastrophe). 

From equation (IV) follows that amplitude of the forced oscil-
lation tends towards zero for very high frequencies. For very 
low frequencies (ω → 0) the amplitude tends towards the 
value M0/J (which is not equal zero). The resonance curve is 
not symmetrical with respect to the resonance frequency ωR. 

 

 

 

Fig. 2: Schematic representation (wiring diagram) of the experimen-
tal setup: (A) exciter, (B) eddy current brake. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Apparatus  
1 Torsion pendulum.............................................. 346 00 
1 DC power supply 0…16V/0…5 A....................... 521 545 
1 Plug-in power supply for torsion pendulum........ 562 793 
1 Ammeter, DC, I ≤ 2 A, e.g. LDanalog 20 ........... 531 120 
1 Voltmeter, DC, U ≤ 24 V, e.g. LDanalog 20 ....... 531 120 
1 Connecting lead, 100 cm, blue .......................... 500 442 
2 Pair cables, red and blue, 100 cm ..................... 501 46 
1 Stop clock .......................................................... 313 07 
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Note: The energy resonance has to be distinguished from the 
amplitude resonance considered above. It is possible to show 
that the oscillator possesses a maximum in energy when the 
frequency of the external torque equals the natural frequency: 
ωex = ω0 (energy resonance). The energy and amplitude 
resonances are thus obtained at different excitation frequen-
cies. 

 

The phase shift φ between the external excitation and the 
oscillating system is given by: 

)(

2
tan 2

ex
2
0

ex

ω−ω
ωδ=φ            (IX) 

 

From this relation follows: 

For ωex << ω0 the oscillator and the exciter oscillate al-
most in phase (φ ~ 0). 

For ωex >> ω0 the oscillator and the exciter oscillate al-
most in anti-phase (φ ~ π). 

For ωex = ω0 the oscillator lags behind the exciter exactly 
by π/2. 

 

 

 

 

 

 

Setup 
The set up of the experiment is shown in Fig. 2 schematically. 
The period T of the exciter is measured by the stop clock (not 
shown in Fig. 2). 

 

 

 

 

 

 

 

 

 

 

Carrying out the experiment 
 

a) Determining the amplitude as function of the fre -
quency −−−− recording the resonance curve 

- Set the current for the electromagnet (eddy current brake) 
to a medium value, e.g. I = 0.4 A. 

- Set the frequency of the exciter by adjusting the applied 
voltage − start with a small value, e.g. ν  ~ 0.1 Hz. 

Hint: Measuring the applied voltage to the exciter serves in 
this experiment as a control only. For measuring the ampli-
tude as function of the frequency ν of the exciter it is recom-
mended to determine the period T of the exciter and evaluat-
ing the frequency ν = 1/T in turn while performing the experi-
ment. 

- Measure the period of the exciter and determine the fre-
quency. To determine the period measure the time 10 T 
for 10 revolutions of the drive wheel. 

- Read off the amplitude when the forced oscillation has 
reached a steady state and the amplitude of successive 
oscillations are constant. 

 

Note: When measuring the amplitude as function of the fre-
quency of the exciter, i.e. the resonance curve, several min-
utes have to be waited until the amplitude is sufficiently con-
stant and the settling process of the forced oscillation has 
been completed. This holds especially for the case of weak 
damping. The settling process is particularly noticeable as a 
beat close to the resonance. (For this reason a medium cur-
rent has to be chosen as starting value.) 

 

 

- When changing the frequency of the exciter to a new 
value it might be necessary to readjust the voltage of the 
exciter after measuring and determining the frequency to 
have an appropriate frequency value with respect to the 
previous frequency setting.  
 
In the region of rapid amplitude increase the frequency 
has to be changed in small steps. 

 

It is recommended to stop the oscillator completely between 
different exciter frequency settings and start the forced oscil-
lation from scratch Thus the time of the settling process is 
minimized. 

 

 

- Compare the motions of the pointers of the exciter and the 
oscillator. Observe the phase relation between exciter and 
oscillator qualitatively. 

- Repeat the experiment for small (e.g. I = 0 A) and large 
damping (e.g. I = 0.7 A). 

 

 

b) Determine the natural frequency of the oscillato r 

- Set the current of the eddy current brake to I = 0 A and 
deflect the pendulum to perform free rotary oscillations. 

- Determine the natural frequency ν0 by measuring 10-
times the period T0 for 10 oscillations with a deactivated 
eddy-current brake (I = 0 A). 

- Calculate the natural frequency 

0
0 T

10=ν  

Note: The natural frequency ν0 can be only estimated as a 
limit value of the almost undamped oscillation. Due to the 
inevitable frictional forces the oscillation is always damped. 

 

 

 

 

 

Safety notes  
g The current through the eddy current brake should not 

exceed 2 A for a long time. 

g Avoid overheating of the coils by measuring too long 
with large current I > 1 A. 
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Measuring example 
 

Note: The measured experimental data may differ from pen-
dulum to pendulum due to inevitable tolerances between 
various eddy current brakes and tolerances in the mechanical 
set up. 

 

a) Determining the amplitude as function of the fre -
quency −−−− recording the resonance curve 

 

Table. 1: 10-times the oscillation period T, frequency ν = 10/T 
and oscillation amplitude A = ϕ0 for I = 0.4 A. 

s
T10 ⋅  

Hz
ν  

Scd
A  

70.0 0.143 0.8 

45.0 0.222 0.9 

31.8 0.315 1.1 

23.7 0.423 1.5 

20.6 0.484 2.2 

19.1 0.523 3.0 

18.0 0.554 2.9 

16.8 0.596 2.0 

15.4 0.649 1.3 

13.3 0.754 0.9 

11.4 0.880 0.7 

10.0 0.998 0.6 
 

 

Table. 2: 10-times the oscillation period T, frequency ν = 10/T 
and oscillation amplitude A = ϕ0 for I = 0 A. 

s
T10 ⋅  

Hz
ν  

Scd
A  

39.9 0.250 1.0 

30.1 0.332 1.1 

30.0 0.333 1.1 

25.1 0.399 1.4 

20.9 0.479 2.5 

19.5 0.514 4.8 

18.7 0.535 9.6 

18.2 0.551 15.4 

17.9 0.560 18.7 

17.8 0.563 19.4 

17.4 0.574 7.2 

17.4 0.576 3.8 

17.2 0.581 3.4 

15.9 0.629 1.7 

13.1 0.762 0.9 

11.3 0.889 0.7 

10.0 0.997 0.6 
 

 

 

Table. 3: 10-times the oscillation period T. frequency ν = 10/T 
and oscillation amplitude A = ϕ0 for I = 0.79 A. 

s
T10 ⋅  

Hz
ν  

Scd
A  

95.1 0.105 0.8 

51.2 0.195 0.9 

36.1 0.277 1.0 

25.3 0.396 1.1 

21.6 0.464 1.3 

20.0 0.499 1.3 

18.1 0.551 1.2 

16.2 0.617 1.1 

14.7 0.682 0.9 

12.4 0.805 0.7 

10.8 0.927 0.6 

9.3 1.079 0.5 
 

 

 

Phase: 

• For small frequency values the pointer of the exciter and the 
oscillator are moving in phase. 

• For large frequencies the phase between the pointer of the 
exciter and the oscillator is 180 deg. 

• For large amplitudes, i.e. for frequencies near the reso-
nance frequency, the phase displacement is approximately 
90 deg. 

 

 

 

b) Determine the natural frequency of the oscillato r 

The natural period measured over 10 oscillation periods have 
been determined to 

 

10⋅T0 = 18 s 

 

from which the frequency is determined to: 

 

ν0 = 0.556 Hz 
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Evaluation and results 
Fig. 3 summarizes the results listed in the tables 1 to 3. The 
amplitude (A = ϕ0) of the resonance curve decreases with 
increasing braking current. At the same time the peak of the 
resonance curve is shifted to lower frequency values in ac-
cordance with equation (VI). This is visualized in fig. 5 and is 
also confirmed by the fit results listed in Table 4. 

 

For small frequency values the resonance cure tends towards 
a value which is different from zero as can be seen e.g. from 
Fig. 4 and Fig. 5. The resonance curve is not symmetrical 
with respect to the resonance frequency νR. 

 

The resonance frequency νR (= ω/2π) = 0.555 Hz for I = 0 A 
corresponds approximately to the natural frequency ν0 = 
0.556 Hz which was estimated by measuring 10-times the 
oscillation period of the free oscillation (i.e. almost undamped 
oscillation) with the deactivated eddy current brake. 

 

The observed phase displacements are in accordance with 
equation (IX) and Fig. 1. 

 

 

 

Table. 4: Parameter obtained by a fit of equation (IV) to the 
resonance curves plotted in Fig. 3. The fit parameters M0 and 
k have been kept constant between the curves of various 
current settings. 

A
I  

scdN
M0  

2scdkg

J

⋅
 

Hz
0ν  1sscd

k
−⋅

 

 0.0 0.62 3.0 0.555 0.0084⋅10-3 

 0.4 0.62 3.0 0.545 0.38⋅10-3 

 0.79 0.62 3.0 0.532 0.89⋅10-3  
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Fig. 3: Resonance curves for different braking currents. The solid 

lines correspond to fits according equation (IV). The fit pa-
rameters are listed in Table 4. ν0 corresponds to the fre-
quency for I = 0 A. 
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Fig. 4: Resonance curve for I = 0.4 A. The solid line is a guide to the 

eyes only. 
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Fig. 5: Shift of the resonance frequency for I = 0.4 A and I = 0.79 A. 

The solid lines are guides to the eyes only. 
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Fig. 6:  The connecting rod can be shifted to set the amplitude  
 of the exciter. 

 

 

Supplementary information 
All forced harmonic oscillations lead to a differential equa-
tion (II). The solution of this general oscillator model obtained 
in this experiment can thus be transferred other type of oscil-
lations, e.g. forced electrical oscillations. 

 

The influence of the exciter amplitude on the amplitude of the 
forced oscillation can be investigated by different adjustments 
of the connecting rod (Fig. 6). 

 

 

 


